Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We consider the formulation of a symbolic execution (SE) procedure for functional programs that interact with effectful, opaque libraries. Our procedure allows specifications of libraries and abstract data type (ADT) methods that are expressed inLinear Temporal Logic over Finite Traces(LTLf), interpreting them assymbolic finite automata(SFAs) to enable intelligent specification-guided path exploration in this setting. We apply our technique to facilitate the falsification of complex data structure safety properties in terms of effectful operations made by ADT methods on underlying opaque representation type(s). Specifications naturally characterize admissible traces of temporally-ordered events that ADT methods (and the library methods they depend upon) are allowed to perform. We show how to use these specifications to construct feasible symbolic input states for the corresponding methods, as well as how to encode safety properties in terms of this formalism. More importantly, we incorporate the notion ofsymbolic derivatives, a mechanism that allows the SE procedure to intelligently underapproximate the set of precondition states it needs to explore, based on the automata structures latent in the provided specifications and the safety property that is to be falsified. Intuitively, derivatives enable symbolic execution to exploit temporal constraints defined by trace-based specifications to quickly prune unproductive paths and discover feasible error states. Experimental results on a wide-range of challenging ADT implementations demonstrate the effectiveness of our approach.more » « lessFree, publicly-accessible full text available January 7, 2026
- 
            Functional programs typically interact with stateful libraries that hide state behind typed abstractions. One particularly important class of applications are data structure implementations that rely on such libraries to provide a level of efficiency and scalability that may be otherwise difficult to achieve. However, because the specifications of the methods provided by these libraries are necessarily general and rarely specialized to the needs of any specific client, any required application-level invariants must often be expressed in terms of additional constraints on the (often) opaque state maintained by the library. In this paper, we consider the specification and verification of suchrepresentation invariantsusingsymbolic finite automata(SFA). We show that SFAs can be used to succinctly and precisely capture fine-grained temporal and data-dependent histories of interactions between functional clients and stateful libraries. To facilitate modular and compositional reasoning, we integrate SFAs into a refinement type system to qualify stateful computations resulting from such interactions. The particular instantiation we consider,Hoare Automata Types(HATs), allows us to both specify and automatically type-check the representation invariants of a datatype, even when its implementation depends on stateful library methods that operate over hidden state. We also develop a new bidirectional type checking algorithm that implements an efficient subtyping inclusion check over HATs, enabling their translation into a form amenable for SMT-based automated verification. We present extensive experimental results on an implementation of this algorithm that demonstrates the feasibility of type-checking complex and sophisticated HAT-specified OCaml data structure implementations layered on top of stateful library APIs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
